Find all the time domain specifications for a unity feedback control system whose open loop transfer function is given by G(S) 25

🧮 Question
Find all the time domain specifications for a unity feedback control system whose open-loop transfer function is given by:
G(s) = 25 / [s(s + 4)]
✅ Answer:
The open-loop transfer function is:
G(s) = 25 / [s(s + 4)]
For a unity feedback system, the closed-loop transfer function T(s) is:
T(s) = G(s) / (1 + G(s))
Substituting G(s):
T(s) = (25 / [s(s + 4)]) / (1 + 25 / [s(s + 4)]) = 25 / (s² + 4s + 25)
This is a standard second-order system of the form:
T(s) = ωn² / (s² + 2ζωns + ωn²)
Comparing:
s² + 2ζωns + ωn² = s² + 4s + 25
We identify:
- 2ζωn = 4
- ωn² = 25 ⇒ ωn = √25 = 5 rad/sec
- ζ = 4 / (2 × 5) = 0.4
📊 Time Domain Specifications
- Natural Frequency (ωn) = 5 rad/sec
- Damping Ratio (ζ) = 0.4
- Damped Natural Frequency (ωd) = ωn√(1 – ζ²) = 5√(1 – 0.16) = 5√0.84 ≈ 4.58 rad/sec
- Peak Time (Tp) = π / ωd ≈ π / 4.58 ≈ 0.686 sec
- Rise Time (Tr) ≈ (π – cos⁻¹(ζ)) / ωd ≈ (π – 1.159) / 4.58 ≈ 0.434 sec
- Settling Time (Ts) ≈ 4 / (ζ × ωn) = 4 / (0.4 × 5) = 2 sec
- Maximum Overshoot (Mp) = e-πζ / √(1 – ζ²) × 100
⇒ e-π×0.4 / √(1 – 0.16) × 100 ≈ 25.4%
🎯 Final Summary:
- ωn = 5 rad/s
- ζ = 0.4
- ωd ≈ 4.58 rad/s
- Rise Time (Tr) ≈ 0.434 sec
- Peak Time (Tp) ≈ 0.686 sec
- Settling Time (Ts) ≈ 2 sec
- Maximum Overshoot (Mp) ≈ 25.4%
