The bowling ball shown rolls without slipping on the horizontal xz plane with an angular velocity ω=ω10i+ω10j+ωzk.Conside

The bowling ball shown rolls without slipping on the horizontal xz plane with an angular velocity ω=ω10i+ω10j+ωzk. Consider vA=(4.8ms)i-(4.8ms)j+(3.6ms)k.vD=(9.6ms)i+(7.2ms)k, and r=109mm. Determine the angular velocity of the bowling ball. (Include a minus sign if necessary.) The angular velocity of the bowling ball is ◻radsj+◻radsjk.

Answer

Angular Velocity of a Rolling Bowling Ball | StudyHW

Angular Velocity of a Bowling Ball Rolling on the xz-plane

A bowling ball is rolling without slipping on the horizontal xz-plane. This allows the use of rigid body motion equations to determine its angular velocity vector.

📌 Given Data

  • Velocity of point B: vB = 3.6i − 4.8j + 4.8k (m/s)
  • Velocity of point D: vD = 7.2i + 9.6k (m/s)
  • Radius of the ball: r = 109 mm = 0.109 m

🔹 Step 1: Use the Rigid Body Velocity Formula

vP = vC + ω × rP/C

🔹 Step 2: Use Point D to Find ωx and ωz

For point D, position vector: rD = 2r j

Using cross product: ω × (2r j) = 2r(ωxk − ωzi)

Matching components with vD = 7.2i + 9.6k:
ωx = 9.6 / (2 × 0.109) = 44.04 rad/s
ωz = −7.2 / (2 × 0.109) = −33.03 rad/s

🔹 Step 3: Use Point B to Find ωy

Position vector of B: rB = r i + r j

Cross product yields:

vB = −r ωzi + r ωzj + r(ωx − ωy)k

Comparing with vB = 3.6i − 4.8j + 4.8k:

  • Confirms ωz = −33.03 rad/s
  • Confirms ωx = 44.04 rad/s
  • Solving: 4.8 = r(ωx − ωy) → ωy = 0

✅ Final Result

Angular velocity vector of the bowling ball:
ω = (44.04) i + (0) j + (−33.03) k rad/s

📘 Conclusion

By analyzing the velocity of two points on the rolling bowling ball and applying vector cross product relationships, we determine that the ball’s angular velocity is:

ω = 44.04 i − 33.03 k rad/s

Add a Comment

Your email address will not be published. Required fields are marked *