A gas at 22°C is compressed isothermally from a pressure of 120 kPa and a volume of4,2m3. The volume ratio of original volume

Answer

Isothermal Compression Calculation

🔧 Thermodynamics: Isothermal Compression

🧪 Problem Overview

A gas at 22°C (295 K) is compressed isothermally from a pressure of 120 kPa and volume of 4.2 m³, with a final volume that is one-third of the original.

  • R = 0.288 kJ/kg·K
  • Cv = 0.712 kJ/kg·K
  • Volume ratio: V₁ : V₂ = 3 : 1

📐 Calculations

1. Final Volume (V₂)

V₂ = V₁ / 3 = 4.2 / 3 = 1.4 m³

2. Mass of the Gas (m)

m = (P₁ × V₁) / (R × T)
m = (120 × 4.2) / (0.288 × 295) ≈ 5.93 kg

3. Final Pressure (P₂)

P₂ = (P₁ × V₁) / V₂ = (120 × 4.2) / 1.4 = 360 kPa

4. Work Done (W)

W = m × R × T × ln(V₁ / V₂)
W = 5.93 × 0.288 × 295 × ln(3) ≈ 556.3 kJ

5. Change in Internal Energy (ΔU)

ΔU = 0 kJ (isothermal process)

6. Heat Transferred (Q)

Q = ΔU + W = 0 + 556.3 = 556.3 kJ

7. Entropy Change (ΔS)

ΔS = m × R × ln(V₁ / V₂)
ΔS = 5.93 × 0.288 × ln(3) ≈ −1.88 kJ/K (entropy decreases)

✅ Final Results

Quantity Value
Final Volume (V₂)1.4 m³
Mass (m)5.93 kg
Final Pressure (P₂)360 kPa
Work Done (W)556.3 kJ
Change in Internal Energy (ΔU)0 kJ
Heat Transferred (Q)556.3 kJ
Entropy Change (ΔS)−1.88 kJ/K

📘 Conclusion

In an isothermal process:
  • Internal energy remains constant (ΔU = 0).
  • Work done by the gas equals the heat exchanged.
  • Entropy decreases in compression due to reduced volume.

Add a Comment

Your email address will not be published. Required fields are marked *